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Apparent Dispersion in Transient Groundwater Flow 

DANIEL J. GOODE AND LEONARD F. KONIKOW 

U.S. Geological Survey, Reston, Virginia 

This paper investigates the effects of large-scale temporal velocity fluctuations, particularly changes 
in the direction of flow, on solute spreading in a two-dimensional aquifer. Relations for apparent 
longitudinal and transverse dispersivity are developed through an analytical solution for dispersion in 
a fluctuating, quasi-steady uniform flow field, in which storativity is zero. For transient flow, spatial 
moments are evaluated from numerical solutions. Ignored or unknown transients in the direction of 
flow primarily act to increase the apparent transverse dispersivity because the longitudinal dispersivity 
is acting in a direction that is not the assumed flow direction. This increase is a function of the angle 
between the transient flow vector and the assumed steady state flow direction and the ratio of 
transverse to longitudinal dispersivity. The maximum effect on transverse dispersivity occurs if 
storativity is assumed to be zero, such that the flow field responds instantly to boundary condition 
changes. 

INTRODUCTION 

Large-scale dispersion of solutes in groundwater (macro- 
dispersion) is now generally believed to result from spatial 
variations in the velocity field caused by spatial variability in 
aquifer properties (primarily hydraulic conductivity). How- 
ever, groundwater velocity is also a function of the hydraulic 
gradient, which can change over time because of changes in 
the relative magnitudes and locations of hydraulic stresses 
imposed on an aquifer system. Thus as the spatial distribu- 
tion of recharge, well withdrawals, and (or) surface water 
stage, for example, vary with time, a temporal variability in 
the magnitude and direction of velocity will occur. For 
example, in a study of a site where hydrocarbons leaked to 
the water table, LaFave [1989] found that the groundwater 
flow direction changed approximately 90 degrees in less than 
4 months in response to changing flow conditions in a nearby 
intermittent stream. 

Aquifer heterogeneity contributes to plume spreading be- 
cause it generates variability in the fluid velocity, causing 
different parts of the plume to move at different rates. 
Temporal fluctuations in recharge, discharge, or boundary 
conditions will also increase velocity variance and thus 
might also be expected to contribute to plume spreading. 
Just as ignorance of aquifer heterogeneity (and spatially 
variable advection) is compensated for by using a higher 
than local dispersivity value in a classical solute transport 
analysis, so could ignoring or neglecting the true transient 
nature of a flow system yield compensating changes in 
assumed dispersivity values. 

Previous Research 

Many (if not most) analyses of field-scale solute transport 
problems assume that an average or steady state groundwa- 
ter flow field prevails. In these cases the effects of flow field 
transients are usually considered to be negligible or of 
second-order importance. Sykes et al. [1982, p. 1699] used a 
steady state flow model in their analysis of contaminant 
migration from a landfill. However, they concluded that 
"... much of the [horizontal] lateral dispersion [is] caused 
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by a changing potentiometric surface rather than 'tortuos- 
ity' "because of consequent changes in both magnitude and 
orientation of velocity vectors. On the other hand, Duguid 
and Reeves [1977], in applying a two-dimensional transport 
model to a site at the Oak Ridge National Laboratory, found 
no substantial difference between using average and tran- 
sient rainfall boundary conditions. Although they found 
variations in concentration attributable to the transient rain- 

fall to be negligible, it should be noted that this recharge was 
uniform over the surface area, so temporal changes in the 
spatially uniform rate would not induce significant changes 
in the direction of flow. The results of both of these studies 

are consistent with those of Wierenga [1977], who showed 
that, for one-dimensional transport using constant dispersiv- 
ity, fluctuations in velocity magnitude alone did not signifi- 
cantly affect longitudinal dispersion. 

Kinzelbach and Ackerer [1986] (see also Ackerer and 
Kinzelbach [1985]) present expressions for apparent longitu- 
dinal and transverse dispersivities, aLa and aTa[L], in tran- 
sient flow: 

OtLa = Ot L • + Ot T• 
w w 

O•Ta = O• T•+ O• L • 

where ar and ar are the true longitudinal and transverse 
dispersivities [L], respectively, Vr is the component of 
velocity in the mean (longitudinal) flow direction [LT-•], and 
Vr is the component of velocity transverse to the mean flow 
direction [LT-•]. The overbars in (1) indicate the time 
average. Kinzelbach and Ackerer [1986] also report that for 
the case of temporal variability in the direction of flow only, 
with the magnitude of velocity constant in time, the sum of 
the apparent dispersivities given by (1) is equal to the sum of 
the true dispersivities: 

Ot La + O• Ta = ot L + ot T (2) 

Kinzelbach and Ackerer [ 1986] fit an observed plume using 
two models. One model assumed transient flow in response 
to seasonal fluctuations and used dispersivities aL = 81.3 m, 

2339 



2340 GOODE AND KONIKOW' APPARENT DISPERSION IN TRANSIENT GROUNDWATER FLOW 

and a T = 0.7 m. The other model assumed steady flow and 
used dispersivities OtLa = 80 m, and aTa = 2 m. Assuming 
steady state flow, a suitable fit was obtained by increasing 
the transverse dispersion coefficient. 

Rehfeldt [1988] applied the stochastic small-perturbation 
approach of Gelhar and Axness [1983] to investigate solute 
transport impacts of temporal variability in the hydraulic 
gradient. Both longitudinal and transverse dispersivity were 
increased by fluctuations in the direction and magnitude of 
velocity, although the effect on longitudinal dispersivity was 
generally insignificant. 

Recently, Naff et al. [1989] postulated that small-scale 
velocity transients may be responsible for large transverse 
spreading observed at two intensively studied field sites. 
They show that adding time-dependent deterministic har- 
monics to the velocity, which change the flow direction, can 
result in significant increases in the variance of concentra- 
tion in the transverse direction. They did not formulate the 
velocity fluctuations in terms of solutions to the flow equa- 
tion. Rather, the temporal velocity variability was directly 
specified and considered independent of spatial velocity 
fluctuations. 

Scope 

The purpose of this study is to investigate the effects of 
temporal velocity fluctuations on apparent or calibrated 
dispersivities and to demonstrate under what, if any, condi- 
tions transverse spreading of a plume is significantly en- 
hanced by transient changes in flow. The study focuses on 
changes in flow direction over time, rather than temporal 
changes in magnitude of velocity, because fluctuations in 
magnitude are unlikely to have a significant effect on disper- 
sion. 

Our approach is to compare transport in transient flow 
fields with that in steady state flow fields having equivalent 
average fluxes and flow directions. In deriving general 
relations between apparent dispersivity and parameters 
characterizing transient flow, we assume aquifer properties 
to be uniform to isolate the effects of temporal velocity 
fluctuations from those of aquifer heterogeneity. This ap- 
proach allows us to derive explicit relations between certain 
parameters and apparent dispersivities, instead of being 
limited to expressions containing, for example, unknown 
time-average velocities. Further, consideration of uniform 
flow cases allows determination of uniform apparent disper- 
sivities for the entire domain. We independently derive 
apparent dispersivity expressions similar to Kinzelbach and 
Ackerer's [1986] result, equation (1), through a convolution 
solution of the transport equation for the special case of 
quasi-steady (zero storativity) uniform flow. However, we 
show that (2) does not hold for our case, and we argue that 
it does not hold in general. 

Our analysis is similar to the moments analysis of Naff et 
al. [1989] in that we consider deterministic changes in the 
velocity. However, our velocity changes are induced by 
solving the flow equation with temporally variable boundary 
conditions. This leads to both temporal and spatial velocity 
fluctuations that are physically consiste_n_t: 

GOVERNING EQUATIONS AND NUMERICAL SOLUTION 

A transient, two-dimensional, areal, groundwater flow 
equation can be written [Bear, 1979]' 

ro. -w 
at OX i 

(3) 

where S is the aquifer storativity or storage coefficient 
[dimensionless], h is potentiometric head [L], t is time [T], xi 
are the horizontal spatial coordinates (x • = x and x2 = y) [L], 
T 0. is the transmissivity tensor [L2T-•], and W is the 
volumetric discharge (+) or recharge (-) rate per unit area 
[LT-•]. In this study we assume that T is constant, uniform, 
and isotropic. S is also constant and uniform, and W is 
nonzero only at a source of solute mass, although the 
magnitude of W is so small that it is insignificant for the flow 
problem. For transient flow the initial head is specified at all 
locations. Possible boundary conditions for (3) include spec- 
ified head and specified flux. Under quasi-steady conditions 
(S = 0) the flow system responds instantly to changes in 
boundary and recharge/discharge conditions. 

A conventional form of the advection-dispersion equation 
governing nonreactive solute transport in two dimensions is 
[after Konikow and Grove, 1977]: 

- '- ebDij - eb • 
oc 

ebVi • + W(C - C') 
Oxi 

(4) 

where C is the volumetric concentration of the solute 
[ML-3], e is porosity [L3L-3], b is the saturated thickness 
[L], D 0. is the dispersion tensor [L2T-1], Vi is the fluid 
seepage velocity vector [LT-•], and C' is the concentration 
in the source fluid (W < 0) [ML-3]. For hydraulic sinks 
(w> 0), c' = c. 

If changes in concentration are small enough that they do 
not affect fluid properties, then the flow and transport 
equations are linked only by the velocity term and the fluid 
storage term (eb). During transient flow the fluid storage 
term (eb) changes because of changes in head and will be 
spatially variable. For the present work the initial value of 
(eb) is uniform in space, and it is additionally constant in 
time for the steady and quasi-steady flow cases. Velocity can 
be determined from the solution of the flow equation (3) 
through Darcy's law and the relation of velocity to flux' 

Oh 
ebVi = -T • (5) 

Oxi 

Conceptually, we assume that the scale of the transport 
problem is large relative to the correlation scale of hydraulic 
conductivity and that macrodispersion due to aquifer heter- 
ogeneity has reached a large-scale Fickian asymptote 
[Gelhar and Axness, 1983; Dagan, 1984]. We follow the 
conventions of neglecting molecular diffusion as a separate 
process and characterizing dispersion by the longitudinal 
and transverse dispersivities [e.g., Bear, 1979]: 

ViVj 

Do,- rIVlaj + IF[ (6) 
where •0' = 1 for i = j, and •/= 0 otherwise, and Iv I is the 

Iv I - [(vx)2 + (vy)2] 
To solve these governing equations in the example simu- 

lations, we apply the numerical model of Konikow and 
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Fig. 1. Solute dispersion in steady state flow field for aœ = 40 m and a r = 2 m. Also shown are model grid and 
boundary condition locations. The small tic marks represent the block size' the grid is 80 by 30 blocks. 

Bredehoeft [1978]. In the numerical model the flow equation 
(3) is solved using implicit finite difference techniques. The 
transport equation (4) is solved using explicit finite difference 
techniques for dispersion, accumulation, and source terms 
and using the method-of-characteristics with moving parti- 
cles for advection [Konikow and Bredehoeft, 1978; Goode 
and Konikow, 1989]. One advantage of this particular model 
is its ability to generate solutions to problems having zero or 
low dispersivity (large Peclet number) that exhibit minimal 
numerical dispersion or oscillation. Of course, the results 
presented would be essentially the same for any two- 
dimensional flow and transport simulator used with adequate 
discretization. 

Aquifer properties are assumed to be uniform and hydrau- 
lic boundary conditions are changed over time to induce 
temporal variability in potentiometric heads and velocities. 
If we consider an aquifer having a rectangular domain 
(Figure 1), uniform flow in the x direction (from left to fight) 
results from imposing constant flux per unit length of bound- 
ary into the aquifer on the left end of the domain (+Qx, 
[L2T-•]), constant flux out on the right end equal to the 
upstream flux (-Qx), and no-flow boundaries (Qy = 0) along 
the top and bottom. Head can be specified at the midpoint of 
the right boundary to provide a model head datum. Under 
these basic boundary conditions the flow direction will rotate 
if additional transient flux boundary conditions are applied 
along the top and bottom boundaries. 

The effects of hydraulic transients on dispersive transport 
can be analyzed by comparison to the case of steady flow, 
where solute spreading is caused entirely by spatial hetero- 
geneity. Figure 1 shows a numerical solution for advection 
and dispersion of solute mass in a uniform, steady state flow 
field having flow from left to right in the x direction. The 
solute, initially occupying a square area (four grid blocks at 
Co = 50,000 mg/L), disperses more in the direction of flow 
than it does perpendicular (or transverse) to flow because the 
longitudinal dispersivity is 40 m, whereas the transverse 
dispersivity is only 2 m. The contours represent lines of 
equal concentration, the labels are log•0(C) (so a value of 3, 
for example, indicates C = 1000 mg/L), and the solute 
distribution is shown at 4 and 16 years. Figure 1 also shows 

the location and types of numerical model boundary condi- 
tions, and the small tics on the axes indicate the block- 
centered, finite difference grid spacing. For the plume 
shown, Qy = 0. The following model parameters are used for 
this and the following numerical examples: T = 0.001 m2/s, 
b = 100 m, e = 0.1, and the grid spacing is 100 m in both x 
and y. The flux boundary condition (volumetric flux per unit 
width) on the inflow boundary on the left is Qx = 10-4 m2/s, 
and an identical flux out is applied on the right outflow 
boundary. The parameters used here result in velocity in the 
x direction of slightly less than 1 m/d. The width of the 
rectangular model area is specified sufficiently large so that 
the simulated plumes will not be affected significantly by the 
lateral boundaries of the domain. 

To induce transient flow having mean flow in the x 
direction, mirror image boundary condition changes are 
applied along the top and bottom boundaries. During the first 
time period (0 < t < t•), constant flux out (-Qy) is specified 
along the top boundary and an equal constant flux in (+Qy) 
is specified along the bottom boundary. If equilibrium is 
established, steady state uniform flow is at an angle 0 = 
tan-i(Oy/Ox) to the x axis. During the second and third time 
periods the pattern is reversed, applying inward flux along 
the top boundary and outward flux along the bottom bound- 
ary. In this case, steady state flow is at an angle -0. 
Subsequently, the top and bottom boundary conditions are 
reversed after every two time periods. This pattern induces 
y velocity fluctuations, while the x velocity is unchanged 
from the steady state case. Thus the solute's center of mass 
moves alternatively in the positive and negative y directions 
within the modeled area. After every two time periods (t = 
(2n)t•), the center of mass returns to the centerline of the 
modeled area, and the time-averaged y velocity is zero. 

APPARENT DISPERSIVITIES IN QUASI-STEADY 
UNIFORM FLOW 

If plumes are simulated using a model assuming steady 
state flow, the calibrated dispersion parameters will account 
for the spreading due to pore-scale mixing, aquifer hetero- 
geneity, and transient flow. For this work the apparent 
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longitudinal and transverse dispersivities are defined as 
those values that yield the best match or calibration of the 
solute transport model under steady state flow conditions to 
a plume that developed under transient-flow conditions. 
Thus the apparent dispersivities are functions of both the 
physical dispersion at the model scale, characterized by the 
true dispersivities as well as hydraulic transients in the 
aquifer. We use numerical experiments to quantify solute 
dispersion in transient-flow fields because analytical solu- 
tions are not available, and we characterize solute spreading 
using the method of moments. However, we can develop an 
analytical solution for the special case of quasi-steady flow 
(S = 0), in which the flow field responds instantly to 
changing boundary conditions. The relations between appar- 
ent dispersivities and true dispersivities can be determined 
by comparing this quasi-steady solution to an analytical 
solution for transport in a steady state flow field that has a 
velocity corresponding to the mean velocity of the quasi- 
steady state case. 

Convolution Solution for Apparent 
Dispersivities 

An analytical solution for transport and dispersion of a 
Dirac pulse of unit solute mass in a quasi-steady uniform 
flow field can be obtained using convolution. For a frame of 
reference it is assumed that the mass is initially at the point 
(x = 0, y - 0) and that flow is initially at an angle 0 to the x 
axis. After some time, t•, the flow field changes direction to 
-0. The angle between the velocity vectors of the first and 
second time periods is 20. The angle of deviation of the flow 
field and the ratio of velocity components are related by 

sin 0 = VT/V COS 0 = VL/V (8) 

(x- Vat) 2 y2 ] ß exp - - • 
4aLaVat 4araVa t 

(10) 

where 

V a -- V cos 0 (11) 

Oi La = Oi L COS 0 + a T sin 0 tan 0 (12) 

Oi Ta-- Oi T COS 0 + Oi L sin 0 tan 0 (13) 

As long as the time periods have the same length, and the 
angle of flow is the same (0 or -0), the relations in (11)-(13) 
are valid, and (10) yields the solute distribution at t = 2 t•, 
4t•, 6t•,..., (2n)t•. 

This definition of apparent velocity (11) is equal to the 
time-averaged velocity at these times and does not include a 
contribution from the transverse velocity component. That 
is, the apparent velocity is equal to the longitudinal velocity 
Va = VL. The time-averaged transverse velocity at these 
times is zero. As shown by (9) and (10), using this Va yields 
the appropriate translation of the plume in the x or mean 
longitudinal direction. 

These apparent dispersivities can be derived for this 
special case using the expressions of Kinzelbach and Ack- 
erer [ 1986]. However, those authors appear to have assumed 
that the magnitude of time-averaged velocity V is equal to 
the actual velocity V. This assumption is necessary in order 
to derive their equality between the sum of the apparent 
dispersivities and the sum of the true dispersivities, equation 
(2) above. From our results, equations (12) and (13), the 
apparent dispersion coefficients are related to the true dis- 
persion coefficients by 

DLa + DTa = DL + DT (14) 

The solute distribution during the second time period is the 
convolution of the distribution at the end of the first period 
(the initial condition for the second period) times the instan- 
taneous solution for a Dirac pulse. When the length of the 
second time period equals the length of the first time period 
(t = 2t•; t - t• = t•), the center of mass has returned to the 
x axis, and the convolution equation reduces to (see the 
appendix) 

1 

C(x, y, t) = •-• (4rrVt)-•[(,œ cos 2 0 + aT sin2 0) 

' (aT COS 2 0 + a L sin 2 0)] -m 

(x - Vt cos 0) 2 ß exp 4(aœ cos 2 0 + ar sin 20)Vt 

y2 j 4(aT COS 2 0 + aZ sin 20)Vt 
(9) 

This can be compared to the analytical solution for the case 
of uniform steady state flow in the x direction [e.g., Bear, 

In contrast to the relation proposed by Kinzelbach and 
Ackerer [1986], equation (2) above, we find that the sum of 
the apparent dispersivities is larger than the sum of the true 
dispersivities: 

OiLa + OiTa • OiL + OiT (15) 

This assumption, that V = V, was included explicitly in 
Ackerer and Kinzelbach's [1985] apparent dispersivity rela- 
tions. 

In general, the magnitude of the time-averaged velocity is 
less than the time-averaged magnitude of velocity because 
the component of velocity that is not oriented in the mean 
flow direction is not included in the time-averaged velocity. 
That is, •1 < •V-•. For the specific case here the magnitude 
of the time-averaged velocity is smaller than the time- 
averaged magnitude of velocity by a factor of cos 0. Use of 
the time-averaged magnitude of velocity will yield a transla- 
tional (longitudinal) speed of solute movement larger than 
the actual rate. In practice, the apparent velocity of a plume 
would be estimated by dividing the distance from the source 
by the time since solute entered the aquifer. Thus only the 
longitudinal velocity would contribute to the estimated ve- 
locity, consistent with the analysis here. 

1979] and is eqmva en• appare•oc• y• rl'he r uaos o apparen o rue ispers•ongitudiqat 
apparent dispersivities are defined: and transverse components, from (12) and (13)respectively, 

are functions of 0 and OiT/OiL. The apparent longitudinal 
1 

C(x, y, t) = •-• (4•rVat)-l(OiLaOiTa) -1/2 dispersivity may be larger than the true value if transverse dispersivity is large (Figure 2). Even for large deviation 
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Fig. 2. Ratio of apparent to true longitudinal dispersivity as a 
function of angle of deviation for several ratios of transverse to 
longitudinal dispersivity. 

angles, the change in longitudinal dispersivity is relatively 
small. In contrast, the apparent transverse dispersivity can 
be much larger than the true value, particularly if the 
transverse dispersivity is small relative to the longitudinal 
dispersivity (Figure 3). 

Under quasi-steady flow conditions, spreading in the 
direction perpendicular to the mean flow direction is affected 
by the value of longitudinal dispersivity, as well as by the 
transverse dispersivity, because the longitudinal component 
is not always oriented parallel to the mean flow direction. 
Rather, longitudinal dispersion is oriented in the direction of 
flow at any instant, and this direction changes over time. The 
contribution of longitudinal dispersivity to spreading perpen- 
dicular to the mean flow direction depends on the angle of 
deviation between the mean velocity and the velocity at any 
instant. For this special case of quasi-steady flow, this angle 
has two values, 0 and -0. Similarly, solute spreading in the 
direction of the mean velocity is a function of both longitu- 
dinal and transverse dispersivity because the flow vector at 
any time is not always oriented in its mean direction. 
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Fig. 3. Ratio of apparent to true transverse dispersivity as a 
function of angle of deviation for several ratios of transverse to 
longitudinal dispersivity. 

Examples 

Figure 4 shows the potentiometric head for the steady 
state case, corresponding to the transport problem illus- 
trated in Figure 1 and the first two time periods of a 
quasi-steady case. The boundary fluxes (per unit width) on 
ihe y boundaries (y = -+ 1500 m) are one half of the fluxes on 
the x boundaries (Qy = 0.5 Qx) and hence IVyl o,5 Vx. The 
angle of deviation for this case is, from (8), 0 = 26.6 ø. Heads 
are essentially unchanged along the centerline, but the head 
contours uniformly rotate in response to changes in the 
boundary conditions. 

Figure 5 shows solute transport in the quasi-steady flow 
field using the same dispersivities as the steady state flow 
case shown in Figure 1 (at = 40 m; ar = 2 m). The initial 
time period is 1 year and, subsequently, the boundary 
conditions change every 2 years, so that the solute's center 
of mass returns to the centerline every 2 years (at 2, 4, 
6,..., 16 years). Figure 5a shows the solute distribution at 
4, 8, and 16 years. For comparison, Figure 5b shows the 
concentration at three selected times (3, 9, and 15 years) 
when boundary conditions are reversed; during years 3 and 
15 the y velocity was negative, while during year 9 the y 
velocity was positive. Spreading in the y direction in this 
case is much greater than that shown in Figure 1 for steady 
state flow. The longitudinal dispersivity acts in the direction 
of flow which, in this case, is not constantly in the x 
direction, as in the steady state case, but varies in time. 
Although the average or mean flow is in the x direction, the 
transient deviations from the mean direction of flow signifi- 
cantly increase spreading in the y direction. The spatial 
variance of these plumes is evaluated below in comparison 
to ti'ansient flow results. 

Using (12) and (13), the calculated apparent dispersivities 
for the case shown in Figure 5 are aLa -- 36 m and ara = 10.7 
m, and their sum is larger than the sum of the true disper- 
sivities (42 m). Although OtLa differs from ar by only 10%, 
ara is more than five times at. Figure 6 shows the analytical 
solution (10) for a Dirac pulse in quasi-steady flow and the 
parameters corresponding to the case in Figure 5 at 4 years 
(t• = 2 years) and at 16 years (t• = 8 years). Also shown in 
Figure 6 are the corresponding numerical solutions for the 
quasi-steady case (from Figure 5a) and for a steady state 
case using the apparent dispersivity values computed using 
(12) and (13). The initial conditions are different for the 
analytical and numerical models (infinitely small point ver- 
sus four finite difference blocks, an area 200 m bY 200 m), 
although this difference becomes less important as the slug 
disperses. The small differences between the analytical 
solution and the numerical solutions are attributed to the 

different initial conditions and minor numerical dispersion 
and illustrate the high accuracy of the numerical methods 
used. The differences between the two numerical solutions 

are negligible. The solute distribution in a quasi-steady flow 
field can be accurately matched using steady state flow and 
apparent dispersivities given by (12) and (13) for those times 
when the center of mass of solute coincides with the center- 

line of the assumed steady state flow field (for example, the 
times shown in Figure 5a). At other times (such as those 
shown in Figure 5b), the solute distribution cannot be 
reproduced using a steady state flow field. 
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Fig. 4. Head contours for the steady state flow field and the first two time periods for the quasi-steady case having 
IVy = 0.5 Vx. The velocity vectors during the first (V•) and second (V2) time periods, as well as the constant component 
of velocity in the x direction (Vx), are illustrated schematically (not to scale). 

EFFECTS OF TRANSIENT HYDRAULIC RESPONSE 

Characteristic Hydraulic Response Time 

The extent to which changes in hydraulic boundary con- 
ditions influence solute transport depends, in part, on the 

rate at which the aquifer responds to hydraulic stresses. 
With nonzero storativity the flow system considered here 
can be modeled as the superposition of one-dimensional 
steady flow in the x direction combined with one- 
dimensional transient flow in the y direction. From a one- 
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Fig. 5. SolUte dispersion in a fluctuating flow field under quasi-steady conditions for ar = 40 m and at -- 2 m at (a) 
4, 8, and 16 years and (b) 3, 9, and 15 years. 
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Fig. 6. Solute dispersion in a fluctuating flow field under quasi-steady conditions computed from analytical solution 
(solid curve) for 0 = 26.6 degrees, aL = 40 m, and a•r = 2 m. Numerical solution for quasi-steady conditions (dashed 
curve) from Figure 5a and numerical solution for steady state flow for aLa = 36 m and a•ra = 10.7 m (chain-dashed 
curve) also shown. 

dimensional transient flow solution using a specified-head 
boundary condition and a semi-infinite domain, such as 
presented by de Marsily [1986, p. 198], a characteristic 
response time T IT] can be derived as 

T = Sy•/4T (16) 

where Y b is the distance from the centerline to the top and 
bottom boundaries [L]. The characteristic response time is 
inversely proportional to the hydraulic diffusivity (T/S). The 
larger this response time, the slower will be the change in 
velocities at the model centerline in response to changing 
boundary conditions. The rate at which the aquifer ap- 
proaches a new steady state is independent of the magnitude 
of the boundary condition change. Because this single factor 
controls transient hydraulic response for this problem, vari- 
ation of any one of the parameters affecting T can be used to 
characterize system sensitivity to yb, T, and S. For the 
numerical examples below, storativity (S) is changed to 
show the sensitivity of dispersivity relations to aquifer 
properties (T and S) and model geometry. 

Examples 

The effects of the aquifer's transient hydraulic response 
can be examined by comparing solute transport in transient 
flow to the base case of steady state flow and to quasi-steady 
flow results. Symmetric stresses result in a transient flow 
field having the same mean velocity as the base case steady 
state flow field. The spread of an initially small slug of solute 
mass, as opposed to a constant source, allows use of the 
method of moments to quantify dispersion [e.g., Freyberg, 
1986; Garabedian et al., 1987]. For Fickian dispersion the 
dispersion coefficient is proportional to the growth in time of 
the spatial variance of the concentration distribution. The 
apparent longitudinal dispersion coefficient is proportional to 
the slope of the x variance (if flow is assumed to be in the x 
direction) of the solute distribution with respect to time. 
Likewise, the apparent transverse dispersion coefficient is 

proportional to the slope of the y variance with respect to 
time. 

Figure 7 shows the potentiometric head at several times 
during the first two time periods for a case using the 
boundary conditions corresponding to the case in Figure 4 
(O•, = 0.5 Ox) but assuming an aquifer storativity of S = 
0.03. The boundary conditions are changed every 2 years, 
after an initial time period of one year. After each change in 
boundary conditions the flow equation is solved using an 
initial time step size of 5 x 105 s (about 5.8 days). The time 
step size is multiplied by 1.4 for each subsequent step, until 
boundary conditions change again. Time intervals for the 
solute transport simulation are automatically determined by 
the model using appropriate stability criteria [Konikow and 
Bredehoeft, 1978] and also limit particle movement each 
time interval to 0.3 times the grid block dimensions. These 
time-stepping parameters provide sufficient numerical accu- 
racy for the example flow and transport simulations. Al- 
though the head at the centerline does not change signifi- 
cantly, the potentiometric gradient in the y direction does 
change, and hence the y velocity changes. The change in 
fluid storage in the aquifer causes the changes in velocity in 
the area of solute mass to lag behind the changes in velocity 
at the boundaries. 

Assuming an aquifer storativity of S = 0.03 (Figure 8) 
results in less apparent transverse dispersion than the quasi- 
steady case (see Figure 5a). Because of the time required for 
the boundary condition changes to propagate into the aqui- 
fer, the flow direction near the centerline changes less 
quickly during a time period for this case than for the 
quasi-steady (S = 0) case. The flow directions near the 
centerline of the flow field shown in Figure 7 rotate through 
a range of directions within an arc of about 53 ø. However, 
under transient flow conditions the actual flow direction is at 

the extremes of this range for much shorter times than under 
quasi-steady flow conditions. For greater characteristic re- 
sponse time and shorter time periods, flow direction changes 
at the centerline may be negligible. Also, the solute's center 
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Fig. 7. Head contours for transient flow field (S = 0.03) having Qy = 0.5 Qx at several times during the (a) first and 

(b) second time periods. 

of mass does not return exactly to the centerline every 2 
years as in the quasi-steady case because of the imposed 
initial condition of uniform flow in the x direction. For the 

quasi-steady case, flow is at an angle 0 instantly at t - 0. 
Figures 9 and 10 show the growth in time of x and y 

variance, respectively, for the steady state and quasi-steady 
cases, corresponding to Figures 1 and 5, respectively, and 
for transient cases assuming S - 0.1, S = 0.03 (correspond- 
ing to Figure 8), and S - 0.01. Slight decreases in the slope 
of the x variance are shown, but the differences are relatively 

insignificant. However, Figure 10 shows significant changes 
in solute spreading in the y direction, depending on the value 
of storativity or the corresponding value of characteristic 
response time. If the storativity is 0.1, the solute spreading in 
the y direction is only slightly increased by the boundary 
condition transients compared to the steady state flow con- 
dition. When the storativity equals 0.01, transverse spread- 
ing is increased almost as much as in the quasi-steady case 
(S = 0). Varying storativity (and hence proportionally vary- 
ing characteristic response time), the effects of boundary 
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Fig. 8. Solute dispersion in fluctuating flow field under transient conditions (S = 0.03 and Qy = 0.5 Qx) for a L = 40 
mandar=2m. 
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Fig. 11. Ratio of apparent to true transverse dispersivity as a 
function of characteristic response time. 

condition transients on solute dispersion range from the 
results shown for the quasi-steady case for small character- 
istic response time to no effects for large characteristic 
response time (Figure 11). 

On the basis of concentration data alone, an investigator 
might interpret these patterns of solute spreading (Figures 5 
and 8) as resulting from a higher transverse dispersivity 
caused by aquifer heterogeneity and not expect that they had 
been caused in part by temporal variations in the flow field. 
Predictions of a model having uniform steady state flow but 
using a high transverse dispersivity would be similar to 
actual transport under transient conditions only as long the 
hydraulic transients continue in the same manner. If the 
transients stop, or if the plume spreads beyond the area 
influenced by the transients, transverse spreading could be 
significantly overestimated. 

EFFECTS OF FREQUENCY OF VELOCITY CHANGE 
ON PLUME SHAPE 

The shape of a plume from a constant source of solute 
mass may indicate past flow directions and rates. Figure 12 
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Fig. 10. Concentration variance in y direction (transverse) as a 
function of time for steady state flow, transient flow, and quasi- 
steady flow for Qy - 0.5 Qx, aL -- 40 m, and aT = 2 m. 

shows a plume at 16 years in a quasi-steady flow field, using 
the same hydraulic characteristics and dispersivities as the 
case in Figure 5 but having solute mass added continually at 
a constant rate and having a longer time between boundary 
condition changes (4 years). Because the time between 
boundary condition changes for this case (4 years) is long 
relative to the travel time of the plume (16 years), the plume 
shape is distinct from the expected plume shape in a steady 
state, uniform flow field. Of course, the ability to make this 
distinction in real plumes would be hindered typically by a 
lack of data. 

When boundary condition changes occur at a high fre- 
quency (short time periods) relative to the plume's advec- 
tion, past hydraulic transients may not be readily apparent 
from plume shape, even with dense spatial sampling. In 
aquifers having large storativity a high frequency of bound- 
ary condition changes would also reduce the apparent dis- 
persion effect because the boundary stresses would not 
propagate as far into the aquifer in a shorter time. Figure 13 
shows a plume that results from the same source, dispersion, 
and quasi-steady flow conditions as the case in Figure 12 but 
having a shorter time period between boundary condition 
changes (1 year). For this high-frequency case the transient 
nature of the flow field is not readily apparent in the plume 
shape because the plume does not have sufficient time to 
move far from the centerline during each short stress period. 
In addition, dispersion smooths out small variations in the 
concentration distribution. The overall width (maximum 
extent from centerline) of this plume (Figure 13) is slightly 
less than that in Figure 12. Because typical field investiga- 
tions are based on a limited number of concentration data, 
gross plume characteristics, such as maximum width during 
the sampling period, may be misinterpreted as being indica- 
tive of dispersion rather than lateral movement of the plume 
due to hydraulic transients. 

The effects of transient changes in flow are further illus- 
trated by examining concentration changes over time at fixed 
points in space. Figure 14 shows how concentration would 
change with time near the flow field centerline (x = 1950 m, 
y = -50 m) for the cases shown in Figures 12 and 13 and for 
/•he case of steady state flow using the apparent dispersivities 
OlLa = 36 m, and Olra = 10.7 m. As expected, the steady state 
flow case yields a relatively smooth breakthrough curve. 
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Fig. 12. Plume at 16 years from constant solute source in fluctuating flow field under quasi-steady conditions having 
4 years between boundary condition changes and aœ = 40 m and at = 2 m. 

(The minor oscillations result from the numerical model's 
procedures in converting concentrations of tracer particles 
within the area of a finite difference cell to average concen- 
tration at the node [see Konikow and Bredehoeft, 1978].) 
However, significant fluctuations in concentration are indi- 
cated for the quasi-steady flow cases, which are indicators of 
behavior under true transient flow conditions. For the lower 

frequency of boundary condition changes (4 years between 
changes, corresponding to the plume shown in Figure 12), 
the range of fluctuation is almost 100% of the peak concen- 
trations. For the higher frequency of boundary conditions 
changes (1 year between changes, corresponding to the 
plume in Figure 13) the range of fluctuation is about 40% of 
the peak. This very high temporal variability could be 
encountered in the field and indicates the need for multiple 
synoptic sampling periods to adequately characterize a 
plume in a transient flow field. 

CONCLUSIONS 

Theoretical and field analyses indicate that longitudinal 
dispersivity is scale-dependent in porous media and that 
transverse dispersivity is generally one or more orders of 
magnitude smaller [e.g., Dagan, 1982; Gelhar and Axness, 

1983], causing solute plumes to be long and thin. However, 
some observed plumes appear to be relatively wide and 
apparently have a relatively large transverse dispersivity. As 
shown here, it is possible that some part of this large 
transverse dispersivity might be due to transient changes in 
the flow field that were not recognized and (or) explicitly 
incorporated into solute transport analyses. 

When concentrations are observed in a flow field that 

previously underwent hydraulic transients, the flow field 
may have returned to a steady state condition. For the cases 
examined here, observations of potentiometric head at such 
a time would show uniform steady flow in the x direction, 
and these observations would provide no indication of past 
transients that controlled fluid path lines. When few or no 
historic potentiometric head or solute concentration data are 
available, as is typical of contamination sites, it may be 
impossible to ascertain the past hydrologic regimes and their 
effect on observed solute spreading, as shown by these 
examples. 

Unrecognized flow field transients that change the direc- 
tion of flow of a plume cause an apparent increase in 
transverse dispersivity because longitudinal dispersion is 
acting in a direction that is not parallel to the assumed flow 
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Fig. 13. Plume for same conditions as Figure 12 except time between boundary condition changes is 1 year. 
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Fig. 14. Concentration as a function of time for an observation 
point located at (x = 1950 m, y = -50 m) from constant solute 
source in steady state flow field for O•La = 36 m and aTa = 10.7 m and 
in fluctuating flow fields under quasi-steady conditions having 4 
years and 1 year between boundary condition changes for aL = 40 
mandaT= 2 m. 

direction. If flow field transients are symmetric in time and 
space, resultant plumes closely resemble plumes that evolve 
in uniform, steady state flow fields having the same mean 
velocity. Having limited spatial data and no historic record 
of heads and concentrations, it will be difficult to distinguish 
between the effects of aquifer heterogeneity and hydraulic 
transients on solute distribution. Asymmetric transients (for 
example, those caused by pumping or recharge only along 
one side of the flow field) may significantly increase the 
spreading of the plume in a direction transverse to the 
assumed flow direction. Given adequate data, however, the 
cause of this effect may be discernible from the plume shape 
and position. 

The increase in apparent transverse dispersivity under 
transient flow primarily is a function of the extent of change 
in flow direction and the ratio of longitudinal to transverse 
dispersivity. For the example problem using a 20:1 ratio of 
longitudinal to transverse dispersivity and a 26.6 ø angle of 
deviation of the transient flow vector from the mean, appar- 
ent transverse dispersivity increases by a factor of about 
five. The apparent transverse dispersivity may be larger than 
the apparent longitudinal dispersivity when flow directions 
change through a wide angle, even if the true transverse 
dispersivity is zero. Thus flow field transients that are not 
recognized or accounted for in transport simulations may 
result in significant overestimates of transverse dispersivity 
during model calibration. Subsequent changes in the nature 
of the hydraulic transients will significantly diminish the 
predictive accuracy of simulations using a transverse disper- 
sivity that was calibrated to an erroneously high value. 

The magnitude of the effect of changes in hydraulic 
boundary conditions or stresses on apparent dispersivity is 
inversely related to the system's characteristic response 
time. Thus the maximum effect on apparent dispersivity 
occurs under quasi-steady flow conditions. For transient 
flow systems (S % 0) the magnitude of the effect is reduced, 
depending on the hydraulic diffusivity of the aquifer and the 
geometric properties of the system, as expressed in the 
system's characteristic response time (equation (16)). The 

effect is greater for higher transmissivity and it decreases 
with increasing storativity and distance to aquifer bound- 
aries. Boundary condition transients are important when 
they occur over a time period long enough relative to the 
system's characteristic response time for a change in flow 
direction to propagate to the location of solute mass. 

Apparent dispersivities change because of the ignored or 
unknown change in flow direction and because the apparent 
velocity magnitude is smaller than the true velocity magni- 
tude. The relations between apparent and true dispersivities 
are derived using an analytical solution for transport in a 
fluctuating, quasi-steady flow field, and they depend on the 
angle of deviation of the velocity vector from the mean and 
the ratio of transverse to longitudinal dispersivity (equations 
(12) and (13)). These apparent dispersivities are similar to 
those presented by Kinzelbach and Ackerer [1986], but here 
we clarify the effect of the difference between the apparent 
or time-averaged velocity and the true velocity magnitude. 
The apparent longitudinal dispersivity can be larger or 
smaller than the true longitudinal dispersivity, depending on 
the ratio of transverse to longitudinal dispersivity. Either 
way, the effects on longitudinal spreading are generally 
much smaller than the effects on transverse spreading. These 
results are qualitatively similar to those of Rehfeldt [1988], 
based on stochastic theory. The apparent transverse disper- 
sivity can be many times larger than the true transverse 
dispersivity when the ratio of transverse to longitudinal 
dispersivity is small. In this case, even relatively small 
deviations in the direction of flow (10 ø angle of deviation 
from the mean) can significantly increase transverse spread- 
ing. 

APPENDIX: ANALYTICAL SOLUTION FOR SOLUTE 

DISPERSION IN A FLUCTUATING, QUASI-STEADY, 
UNIFORM FLOW FIELD 

Convolution can be used to obtain an analytical solution 
for solute dispersion in a fluctuating, uniform flow field under 
quasi-steady conditions. An initial point source of solute 
mass is released at the origin (x = 0, y = 0). Flow is initially 
at an angle 0 to the x axis. After some time t i, the flow field 
changes direction instantly to -0. The solute distribution 
during the second time period is the convolution of the 
distribution at the end of the first period (the initial condition 
for the second period) times the solution (Green's function) 
for an instantaneous point source. 

The analytical solution for the spread of a solute in 
uniform flow (in the x direction) in an infinite plane from an 
instantaneous injection of a unit mass at the origin is [after 
Bear, 1979] 

1 

C(x, y, t) = •-• (4•rVt)-](aœaT) -•/2 

(x- Vt) 2 y2 ] ß exp - 
4aœVt 4aTVt 

(A1) 

If the flow vector is at an angle 0 to the x axis and the 
injection occurs at X, Y, the solution is 
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1 

C(x, y, t) = • (4z'Vt)-l(aLaT) -1/2 

[(x-X) cos 0+(y- Y) sin0-Vt] 2 + ß exp - 4aL Vt 

[(y- Y) cos 0-(x-X) sin0] 2 } - 4a rVt (A2) + 
Because the governing equation is linear, the concentration 
distribution from an arbitrary initial condition is the convo- + 
lution of the initial condition and the solution for an instan- 

taneous point injection: 

C(x, y, t)=• -• ebCi(X, Y, tl) 
ß ebC(x - X, y - Y, t - tl) dX dY (A3) 

where Ci(X, Y, t•) is the initial condition for the second time 
period beginning at time t -- t•. During this first time period, 
0 < t < t•, the flow direction is at angle 0 to the x axis. At 
time t• the flow direction switches instantly to an angle -0. 
Using (A2) for the initial condition, Ci at time tl, and using 
(A2) and an angle of-0 for the instantaneous solution at 
time t > t•, the convolution (A3) is 

C(x, y, t)=• -oo (4z'Vti)-i(aLaT)-i/2 

ß exp { - [X cos 0 + Y sin 0 - Vt•] 2 
4aLVt• 

[Ycos 0-Xsin0] 2 

4aTVtl 

ß [4rrV(t - tl)]-l(otLOtT) -1/2 

[(x-X) cos 0-(y- Y) sin 0-V(t-t•)] 2 ß exp - 4aLV(t - t•) 

[(y-Y) cos 0+(x-X) sin0] 2 } + - dX dY (A4) 
4a TV(t -- t •) 

where we have used cos (-0) = cos (0) and sin (-0) = -sin + 
(0). 

Equation (A4) may be integrated for the general case using 
equation 3.323 from Gradshteyn and Ryzhik [1980]' + 

1 

C(x, y, t) = e• (4V)-2[Z'aLartl(t -- tl)]-I(pxPy)-I 

[x cos 0-y sin 0 - V(t- tl)] 2 ß exp - 4a L V(t - t •) + 

(x sin 0 + y cos 0) 2 (Vtl) 2 cos 20(Vtl) 2 
+ 

4arV(t- t•) 4aœVt• (4aœVtl)2Px 2 

cos 20[x cos 0 -y sin 0 - V(t- tl)] 2 

[4a œV(t - tl)]2Px 2 

2 cos 20Vt•[x cos 0 -y sin 0 - V(t- t•)] 

[4aœVtl][4aœV(t - ti)]Px 2 

sin 20(x sin 0 + y cos 0) 2 

[4aTV(t- tl)]2Px 2 

2 sin 0 cos 0Vti(x sin 0 + y cos 0) 

[4at Vti][4a TV(t -- ti)]Px 2 

2 sin 0 cos 0[x cos 0 -y sin 0- V(t- t 1)][ x sin 0 +y cos 0] 

[4a L V(t- t l)][4a TV(t-- t i)]Px 2 

(A5) 

where 

cos2 0 sin2 0 cos2 0 sin2 0 
px2= • + + 

4otLVt 1 4OtTVtl 4otLV(t- tl) 4otTV(t- tl) 
(A6) 

2 I 
cos2 0 sin2 0 cos2 0 sin2 0 

+ + + 

40trVtl 4otLVtl 4otrV(t- tl) 4otLV(t-- tl) 

sin2 0 cos2 0 
{ - (4a L Vt l) -2 _ (4a TVt 1) -2 

+ 2(4aLVtl)-l(4aTVtl) -1 -- [4aLV(t -- tl)] -2 

+ 2(4aLVti)-l[4aLV(t- t•)] -1 

-- [4aTV(t -- tl)] -2 -- 4(4aLVtl)-l[4arV(t -- tl)] -1 

+ 2(4a TVtl)-l[4a TV(t -- tl)] -1 

+ 2[4aLV(t-- ti)]-i[4aTV(t- tl)] -1} (A7) 

.__ 
2 sin 0 Vt• 

4aLVtl 

2ysin 20-2xsin0cos 0+2sin 0 V(t-t•) 
+ 

4aœV(t- t•) 

2ycos 20+2xsin0cos 0 

4a TV(t -- tl) 

2 sin 0 cos 0 { cos 0 Vt• cos 0 Vt• - + 

Px 2 (4aœ Vt •) 2 (4a œ Vt •)(4a rVt •) 

cos 0 Vt•-xcos 2 0+ysin 0cos 0+cos 0 V(t-t•) 

[4aLVt•][4aLV(t - t•)] 

xcos 20-ysin0cos 0-cos 0 V(t-tl) 

[4aL V(t - tl)] 2 

xcos 20-ysin0cos0--cos0 V(t-t•) 

[4a TVtl][4otL V(t -- tl)] 

--xsin 2 0-ysin0cos 0-cos 0 Vt• 

[4aLVtl][4arV(t - tl)] 

xsin 2 0+ysin0cos 0 

[4a TVtl][4a TV(t -- tl)] 



GOODE AND KONIKOW' APPARENT DISPERSION IN TRANSIENT GROUNDWATER FLOW 2351 

x sin 2 0 - x cos 2 0 + 2y sin 0 cos 0 + cos 0 V(t- tl) 
+ 

[4arV(t- t•)][4arV(t- t•)] 

--x sin 2 0 -y sin 0 cos 0} + [4a rV(t -- tl)] 2 (A8) 
It is possible to perform this convolution (and integration) 
for multiple time periods of arbitrary length. The analytical 
results presented in Figure 6 are computed using a numerical 
implementation of (A5)-(A8). 

This analytical solution may be useful for testing grid 
orientation effects in numerical solutions of the transport 
equation. The orientations of longitudinal and transverse 
dispersion components change from the first time period to 
the second. During the second time period the long axis of 
the plume changes orientation as time increases. Because 
the flow direction changes, it is not possible to orient the 
numerical grid with the flow direction for both the first and 
second time periods. 

When the second time period equals the first time period 
(t = 2tl;t - t• - t•), the center of the plume has returned to 
the x axis, and (A5) reduces to 

1 

C(x, y, t) = • (4rrVt)-•[(ar cos 2 0 + a T sin 2 0) 
ß (arCOS 2 0 + a L sin 2 0)] -1/2 

(x - Vt cos 0) 2 ß exp 4(c• L cos 2 0 + aT sin 20)Vt 

Y: 4(• T COS 2 0 + •L sin20)Vt (A9) 
which can be written 

1 

C(x, y, t) = • (4*rVat)-l(OtLaOt Ta) -1/2 

I (x- Vat)2 y 2 ] ß exp - - • (A10) 
4a La Va t 4a Ta Vat 

where 

V a = V cos 0 (All) 

aLa = aL COS 0 + aT sin 0 tan 0 

ara= ar cos O + ar sin O tan O 

(A12) 

(A13) 

This form is directly analogous to the solution for dispersion 
in a uniform steady state flow field (A1). As long as the time 
periods have the same length, and the angle of flow is the 
same (0 or -0), the relations in (All)-(A13) are valid, and 
(A10) is the solute distribution at t = 2t•, 4tl, 6t•,..., 
(2n)t•. For cases of ar greater than at, and 0 less than 90 ø, 
this plume is oriented with its long axis in the direction of the 
mean velocity. At other times (t % (2n)t•) the plume's long 
axis will not be aligned in the mean flow direction. 
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